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Abstract With the aquatic environments being excessively stressed by human activities, the need
for monitoring critical quality parameters continuously and at large spatial scales is greater than ever.
Tο this end, the goal of this study was to exploit remote sensing data for water quality estimation
towards the development of a long-term monitoring protocol for aquatic systems. High resolution,
multitemporal datawere employed alongwith in-situmeasurements for keywater quality parameters.
After establishing relations between the satellite and in-situ data, multitemporal geospatial maps of
Lake Karla were produced and validated, indicating that the observed chlorophyll-α is fluctuating
throughout the year. In particular, a high correlation rate (r2 > 89%) for Chl-awas derived through a
linear regressionmodelwhile certainmismatches occurred due to frequent cyanobacterial blooms that
were mainly observed in the quite shallow parts of the lake. Moreover, the spatiotemporal analysis
revealed a gradual slight decline in average chlorophyll-α concentrations from the beginning of 2011
and onward. The lake regions which were affected the most were the shallow ones, so it is necessary
to better distribute the sampling locations within the lake in order to better quantify the fluctuations of
water quality parameters. By exploiting high resolution satellite imagery, the proposed methodology
implements a low-cost water monitoring system which enables the frequent update of important
water quality parameters of any relevant geo-database, towards the efficient development of water
management plan for protection and restoration of sensitive aquatic ecosystems.
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1 Introduction

Currently, the need to protect the aquatic environment by monitoring critical
parameters is greater than ever (Tsakiris 2015). Thus, reliable and low cost
monitoring methods and techniques are becoming more essential. The most com-
monly used approach to assess water quality in aquatic systems is through in-situ
water sampling and physico-chemical and biological analyses (Heddam 2016). This
process, while quite satisfactory in terms of accuracy, is relatively expensive and
limited in terms of spatial-temporal sampling distribution. An accurate representa-
tion of the physical processes taking place in a complex aquatic ecosystem
requires frequent sampling. Moreover, in-situ field measurements cannot provide
the spatial distribution in real time due to their limited resources, weather condi-
tions and the remoteness of an aquatic system (Tebbs et al. 2015). On the other
hand, remote sensing data and techniques have shown great potentials towards the
efficient and accurate estimation of key water quality parameters for inland water
systems.

In this study, the main focus is on shallow inland aquatic ecosystems, in which the
physical processes taking place are extremely sensitive to small changes in water
balance. Reviewing past literature, Wrigley and Horne (1974) were among the first to
use multi-temporal, multi-sensor data to estimate the lake eutrophication phenomenon.
Several research efforts have been reported in the literature which employ remote
sensing approaches to estimate water quality parameters in lakes (Gons et al. 2008;
Matthews et al. 2010; Lesht et al. 2013; Nobuhle et al. 2014), rivers (Olmanson et al.
2013), marine environment (Meguro et al. 2004) or artificial reservoirs (Nellis et al.
1998), with promising results. These studies were mainly focusing on the retrieval of
specific water quality parameters such as: chlorophyll-α (Pozdnyakov et al. 2005;
Giardino et al. 2007; Bresciani et al. 2011), dissolved organic matter (Kutser et al.
2005; Brezonik et al. 2015), turbidity (Chen et al. 2007), water clarity –the opposite
of turbidity- (Olmanson et al. 2008; McCullough et al. 2012), and cyanobacteria
(Dash et al. 2011; Matthews et al. 2012).

Recently, Majozi et al. (2014) determined spectral diffuse attenuation coefficient in
a water column in order to map the eutrophic depth in Lake Naivasha, Kenya using
Medium Resolution Imaging Spectrometer (MERIS) data. Also, Jay and Guillaume
(2014) proposed a statistical method to map water column characteristics, including
depth and water quality parameters, using hyperspectral remote sensing data. Their
analysis obtained reliable estimations of water quality with respect to depth, especially
in shallow aquatic systems. Palmer et al. (2015) were able to map phytoplankton
phenology in Lake Balaton, Hungary, by using a 10-year set of MERIS observations.
Luo et al. (2016)) applied remote sensing techniques using HJ-CCD and Landsat TM
imagery, in order to monitor seasonal and inter-annual variations and the dynamics of
aquatic vegetation types in Taihu Lake, China. Matthews et al. (2010) also used
MERIS imagery in order to evaluate the performance of empirical and semi-
analytical algorithms in the hypertrophic lake Zeekoevlei, in Cape Town. Wilkie
et al. (2015) applied a model in Lake Balaton, Hungary, in order to produce a
calibrated log(chlorophyll-α) spatial map from remote-sensing data and in-lake labo-
ratory-analyzed data, using statistical downscaling. The results were promising in the
majority of cases.
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In addition, one should consider the current availability of open/free, high resolution,
multispectral satellite data like Landsat 8 (with 30 m/15 m spatial resolution) and Sentinel-2
(with 20 m/10 m spatial resolution). Therefore, the main challenge is to exploit such data,
develop and validate low-cost but reliable monitoring systems. Such tools will not only
provide the opportunity to analyze data from satellite images and extract information on a
regular basis, but will also have the ability to export information from images corresponding to
prior years, when sampling in a particular aquatic system has not been conducted in the past
(Zheng and Yuanling 2011).

Regarding the necessity to establish innovative approaches for the protection,
restoration and monitoring of aquatic ecosystems in all member states, this was
mainly imposed by the 2000/60/EC Water Framework Directive (WFD), requiring
regular monitoring of water quality for all water bodies within a river basin.
Remote sensing techniques have already provided evidence for the accurate estimation
of water quality indicators such as chlorophyll-α, turbidity and dissolved organic
matter, leading to a representative assessment of aquatic ecosystem environmental
status (Giardino et al. 2001; Gons et al. 2002; Koponen et al. 2002; Brezonik et al.
2005; Wang et al. 2006; Hellweger et al. 2007). Regarding the European Policy
Framework, there is solid acknowledgment of earth observation capabilities since
satellite based water quality services can serve as a harmonized measure of several
relevant water quality parameters, such as turbidity, suspended matter, organic absorp-
tion and chlorophyll concentration, and the ratio of green algae and blue algae, which
are already used as proxies for the ecological status defined in the WFD.

The aim of this study was to develop and validate a predictive relationship between
physicochemical in-situ measurements, with emphasis on chlorophyll-α, and satellite data.
Therefore, advanced remote sensing methods were employed for water quality estimation
through the development of a long-term monitoring protocol for aquatic systems of high
interest.

2 Area of Study, Materials and Method

The proposed methodology focuses on inland aquatic systems, and specifically, the
emphasis is given in shallow lakes due to the lack of strong vertical stratification, as
the water quality characteristics could be described as homogeneous in depth. The
implementation of this analysis was performed in Lake Karla, Greece, which is
located in the lowest part of Thessaly plain, and up to 1962, when it was dried, it
was considered to be one of the most important wetlands in Greece. Watershed
surface runoff and floodwaters of Pinios River were the main freshwater suppliers
of Lake Karla. In 1962, a complete drying of the lake took place, in order to provide
additional agricultural area.

The decision to restore part of the former lake was taken in the early 80s, but the
construction works began a few years later. The rehabilitation of the former lake
Karla has been funded by the Operational Program ‘Environment’, which was ap-
proved by the European Commission for the period 2000–2006. The plans dictate that
the restored lake should meet the goals of flood protection, wetlands conservation,
fulfillment of irrigation needs and the need for drinking water supply. The new re-
constructed Lake Karla lies between latitude 39o26’49″ to 39o32’03′ N and longitude
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22o46’47″ to 23o51’50″ E, and has a surface area of 38 km2, while its perimeter is
30.55 km. The hydrological basin of Lake Karla has a total area of 1171 km2, of
which more than 600 km2 comprise a southern flat plain, while the eastern part is
surrounded by mountains and hills. It is mainly characterized by its shallow depth,
with a maximum water depth of 4.5 m and a mean depth of 2 m (Fig. 1). Nowadays,
its main sources of freshwater are surface runoff from the drainage area, direct
precipitation and overflow from Pinios River. However, the obtained water quantities
are considered limited, resulting in severe water quality and quantity problems affect-
ing primarily the biodiversity of the lake (Mellios et al. 2015).

2.1 In-situ, Ground-truth Data

Field monitoring studies have been conducted from 2011 to 2014 and data acquired
has been presented in previous studies (Sidiropoulos et al. 2012; Chamoglou et al.
2014). Moreover, field data sets were also obtained from the Management Body of
Lake Karla database (www.fdkarlas.gr), along with observed events in macroscopic
scale (massive fish kills, rainfalls, inputs etc.). Data involve mainly abiotic parameters
such as pH, conductivity, D.O., inorganic nitrogen compounds (NH4 and NO3), total
phosphorus and also chlorophyll-α, as an indirect index of algal biomass.
Conductivity, pH and D.O. concentrations were measured in-situ by electrode probes
(YSI, USA), while concentrations of nutrients and chlorophyll-α were determined
based on laboratory analyses. Moreover, multitemporal, multispectral, remote sensing
Landsat data have been exploited towards the establishment of a standardized, cost-
effective, monitoring process of key water quality parameters. Based on concurrent
field and satellite data acquisition campaigns, multiple in-situ, analytical, hyperspectral
and satellite observations were processed and fused towards the establishment of
concrete regression models between remote observations and physico-chemical
measurements.

Fig. 1 Lake Karla is located in central Greece (left). In-situ sampling locations (right): permanent (in blue
colour) and non-permanent (red colour) (Source: Google maps & USGS respectively)
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2.2 Remote Sensing Data

One of the main approaches used in the water quality estimation, also implemented in
the current paper, is the creation of empirical algorithms, thus, relating satellite
imagery data with water quality parameters, a process which is rather field-
dependent (Giardino et al. 2007). In other words, it is a form of data fusion, as it
combines information from different sources (Wilkie et al. 2015). For the purposes of
this analysis, remote sensing data were obtained from Landsat 7 (L7) and Landsat 8
(L8) imagery acquired from 2011 to 2014 (Table 1). The data were acquired from the
U.S. Geological Survey (USGS) free of charge. Radiometric and atmospheric correc-
tions were consequently performed on the remote sensing data, as specified by
standard protocols.

High correlation rates were established between satellite and in-situ sampling data.
Linear regression equations were created by correlating ground-truth data with corre-
sponding reflectance values acquired from the equivalent point in the satellite imagery.
Multiple combinations of the spectral bands were used. Meanwhile, the bands of the
hyperspectral data were converted to correspond to the satellite’s, so that both datasets
were comparable, in order to examine the consistency of the equations among the
datasets. The model which yielded the best results was the first one. Therefore, its
equations which yielded the highest correlations per key water quality parameter were
implemented on the satellite imagery, creating multi-temporal geospatial maps with the
estimated concentrations per date. The maps were consequently evaluated using the
remaining ground truth data and, when needed, the appropriate feedback was carried
out before the creation of the final product (Fig. 2).

3 Results and Discussion

3.1 Quantitative Evaluation of Remote Sensing Products

Preliminary results of the present analysis showed that water quality indicators such as
chlorophyll-α, dissolved oxygen, conductivity, ammonium and pH, were strongly correlated
(r2 > 0.80) with Landsat band ratios, while total phosphorus and nitrates yielded lower
correlations (r2 = ~0.55). Nonetheless, while NH4 showed strong correlations, when the
equations were applied on the Landsat imagery, the results were quite dissimilar to the
sampling, thus proving it to be a rather sensitive parameter. However, it should also be
considered that the ground-truth data were collected from point locations, while a Landsat
pixel is equivalent to an area of 30 × 30 meters.

In particular, results for chlorophyll-α demonstrated satisfying correlations for L7
(r2 = 89.80 %) and L8 (r2 = 78.06 %), while, when compared with the in-situ ground-
truth data, the calculated chlorophyll-α levels were slightly overestimated with L7
data and slightly underestimated with L8 data. The reliability of the developed model
is boosted by the fact that the calibration and validation data series consist of multiple
images per year, for a time period of 4 years (approx. 30 maps), resulting in
ameliorating the compatibility process, whereas in a number of similar approaches
reported in the literature, the data series validation was limited to few satellite images
(Koponen et al. 2002). A significant number of earth observations are in good
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agreement with water quality field data over many time periods, demonstrating that
the developed model is able to produce reliable water quality maps for Lake Karla
(Table 2).

During our experiment we tested more than 140 spectral band combinations of
Landsat 7/8 against in-situ data. The ones which yielded the best results were used in
the creation of the maps. The main remote sensing indices that yielded robust results
were (R835, R660), (R835, R2220), (R835, R1650), (R485, R560, R660, R835),
(R560, R835) for L7 and (R655, R560), (R480, R560, R655), (R560, R865),

Fig. 2 The flowchart of the
developed mapping procedure

Table 2 Compatibility between
field and satellite data based on a
qualitative evaluation. Quantitative-
ly the threshold (regarding r2) were
approximately set to Yes: >80 % &
No: <80 %. Mismatches were due
to frequent cyanobacterial blooms
and observed mainly on the quite
shallow parts of the lake

Acquisition date Compatibility of field and satellite data

12 Feb. 2011 Yes

24 Apr 2011 Yes

20 Jun 2011 No

13 Jul 2011 No

14 Aug 2011 Yes

23 Aug 2011 No

15 Sept 2011 Yes

25 Mar 2011 Yes

22 Jun 2012 Yes

15 Jul 2012 No

1 Sept 2012 Yes

3 Oct 2012 No

15 May 2013 Yes

16 Jun 2013 Yes

11 Jul 2013 Yes

23 Mar 2014 Yes

11 Jun 2014 No
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(R865, R1690), (R480, R560), (R440, R560) for L8 (Table 3). The final equations
used for the derivation of chl-α maps from satellite data were the following:

y ¼ 391:3413 R835
.
R660

� �
−138:9378 L7 datað Þ ð1Þ

y ¼ 127:2997 R655=R560ð Þ−49142 L8 datað Þ ð2Þ

3.2 Multi-temporal Evaluation of Delivered Geospatial Maps

An attempt to produce multi-temporal geospatial maps in Lake Karla was performed based on
the developed model, since chlorophyll-α is a phyto pigment present in all algal groups in
freshwaters. Chlorophyll-α shows distinct absorption maxima in the blue wavelength range at
440 nm and in the red wavelength range at 678 nm, leaving a green reflectance maximum, due
to cell internal scattering processes (i.e., biomass). Chlorophyll-α forms a good descriptor for
primary productivity and could be linearly related to biomass. Moreover, the excessive algal
growth is observed as the main symptom of eutrophication, but at the same time algal biomass
dynamics is an essential tool for eutrophication management. Remote sensing data analysis
showed that chlorophyll-α concentrations displayed a wide variance in field measurements
(from 16 to 400 mg/cm3), indicating, generally, high values during summer months, while the
same pattern is also obvious from the geospatial chlorophyll-α concentration distribution in
the lake, confirming its eutrophic to hypertrophic status according to the OECD (1982) and
TSI Carlson (1977) classification schemes.

Deviations from this pattern are mainly due to the conditions during the time of measure-
ments (time-specific events) and also the spatial characteristics of the lake (site-specific). For
example, the organic load inflows through the main ditches that are affecting the north-western
and the eastern part of the lake, could be justified by produced maps, depicting chlorophyll-α
concentrations on June 17th, June 24th and July 11th of 2013. Unfortunately, oligo-trophic
values were not measured in Lake Karla and cannot be compared with the corresponding
satellite data.

On the other hand, meso-trophic values were well correlated (February and April 2014),
while extreme in-situ values corresponding to strong hypertrophic conditions (> 200 mg/m3)
were underestimated in some occasions, concluding that new classification schemes should be
applied for heavily modified reservoirs with high nutrient loads such as Lake Karla (Fig. 3).

The multi-temporal satellite data analysis performed in Lake Karla indicated that the
observed chlorophyll-α fluctuates throughout the year. The spatio-temporal analysis revealed

Table 3 Sensor-specific band combination and established correlation for Chl-α estimation

Landsat 7 Band combinations r2 Landsat 8 Band combinations r2

R835/R660 89.80 R560-R865 78.06

(R835/R660) + R1650 89.60 R480-R560 76.65

R835/R2220 82.49 R560-R480 76.65

R835/(R485 + R560 + R660) 82.21 R440-R560 72.90
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a gradual slight decline in average chlorophyll-α concentrations from the beginning of 2011
and onward. The areas of the lake that were affected to a greater extent are the shallow ones.
After the precipitation periods, a slight improvement could be observed, in terms of chl-α,
explaining a consequent improvement of the turbid conditions. It is worth mentioning that
throughout almost the entire monitoring period (2011–2014) the only freshwater sources in the
lake were the precipitation and the surface runoff, while the retention time was almost infinite
since there was not any outflow except evaporation. Along with the decrease in mean
chlorophyll-α levels, a similar gradual decrease was also detected on the peak concentration
levels, as well.

The established relation between remote sensing and in-situ field data was based on linear
regression models with high correlation rates (i.e., r2 > 89 % for chl-α), while certain
mismatches occurred due to frequent cyanobacterial blooms and were mainly observed on
the quite shallow parts of the lake. In particular, cyanobacterial blooms are very common in
Lake Karla persisting from early spring to mid autumn (Papadimitriou et al. 2013). The
findings of this analysis are in accordance with those of Kutser (2004), according to whom
a large uncertainty associated to chlorophyll-α detection occurs during cyanobacterial blooms,
leading to over/underestimation of remote satellite observations. Cyanobacteria are strongly
affected by weather conditions regulating their buoyancy and forming also dense scums just
below water surface or on the surface, thus resulting in rough chlorophyll-α assessment.

4 Conclusions

Multi-temporal, multispectral, remote sensing Landsat data have been exploited towards the
establishment of a standardized, cost-effective, monitoring process of key water quality

Fig. 3 Chlorophyll-α multi-temporal geospatial maps for Lake Karla
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parameters in shallow lake ecosystems. Landsat 7 and Landsat 8 satellite data, along with
hyperspectral and ground truth data, covering a time period of 4 years, were processed and
fused under a quantitative evaluation framework. The results were quite promising, as concrete
prediction models were created for chlorophyll-α. While the results are rather satisfying, the
need for better distributed sampling stations is pointed out, as the current ones do not provide a
view on the fluctuations throughout the entire water body of Lake Karla. By using satellite
imagery, this methodology presents a low-cost water monitoring system that could provide a
frequently updated water quality parameters geo-database, eventually leading to an efficient
development of water management plan for protection and restoration of sensitive aquatic
ecosystems.
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